Home
Class 12
MATHS
If a > b >0, with the aid of Lagr...

If `a > b >0,` with the aid of Lagranges mean value theorem, prove that `n b^(n-1)(a-b) < a^n -b^n < n a^(n-1)(a-b) , if n >1.` `n b^(n-1)(a-b) > a^n-b^n > n a^(n-1)(a-b) , if 0 < n < 1.`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Using Lagranges mean value theorem, show that sinx 0.

Using Lagranges mean value theorem, prove that |cosa-cosb|<|a-b|dot

Using Lagranges mean value theorem, prove that |cosa-cosb|<=|a-b|dot

Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a ,where 0ltaltb

Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a, where 0ltaltbdot

Verify Lagranges mean value theorem for f(x)=x(x-1)(x-2) on [0,\ 1/2]

Using mean value theorem, prove that tanx > x for all x(0,pi/2)dot

Using lagrange's mean value theorem, show that (beta-alpha)/(1+beta^2) alpha > 0.

In [0, 1] Lagrange's mean value theorem is not applicable to

In [0,1] , lagrange mean value theorem is NOT applicable to