Home
Class 12
MATHS
Find the minimum value of (x1-x2)^2+((x...

Find the minimum value of `(x_1-x_2)^2+((x_1^2)/20-sqrt((17-x_2)(x_2-13)))^2` where `x_1 in R^+,x_2 in (13,17)`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of 2x^2 +x-1 is

If x is real, find the minimum value of x^(2)-8x+ 17

Find the value of x , if 6x=23^2-17^2

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

If x is real, the minimum value of x^(2) - 8 x + 17 is

find the value of x [x^(x)]^(1/sqrtx)=2^sqrt2

The minimum value of [x_1-x_2)^2 + ( 12 - sqrt(1 - (x_1)^2)- sqrt(4 x_2)]^(1/2) for all permissible values of x_1 and x_2 is equal to asqrtb -c where a,b,c in N , the find the value of a+b-c

Find the value of sqrt((x+2sqrt((x-1)))]+sqrt((x-2sqrt((x-1)))] =

If x is real, then find the minimum value of (x^(2)-x+1)/(x^(2)+x+1) .

Find the derivative of sec^(-1)(1/(2x^2-1)) w.r.t sqrt(1-x^2) at x=1/2