Home
Class 12
MATHS
Using Lagranges mean value theorem, prov...

Using Lagranges mean value theorem, prove that `|cosa-cosb|<=|a-b|dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a, where 0ltaltbdot

Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a ,where 0ltaltb

Using Lagranges mean value theorem, show that sinx 0.

Using Lagranges mean value theorem, prove that (b-a)/b < log(b/a) < (b-a)/a ,w h e r e 0 < a < bdot

Using Lagranges mean value theorem, prove that (b-a)sec^2a lt (tanb-tana) lt (b-a)sec^2b , where 0ltaltbltpi/2

Using lagrange's mean value theorem, show that (beta-alpha)/(1+beta^2) alpha > 0.

Using Lagranges mean value theorem, find a point on the curve y=sqrt(x-2) defined on the interval [2,3], where the tangent is parallel to the chord joining the end points of the curve.

Using Lagrange's Mean Value theorem , find the co-ordinates of a point on the curve y = x^(2) at which the tangent drawn is parallel to the line joining the points (1,1) and (3,9).

The value of c in Lagrange's mean value theorem for the function f(x) = |x| in the interval [-1, 1] is

The value of c in Lagrange.s mean value theorem for the function f (x) = x ^(2) + x +1 , x in [0,4] is :