Home
Class 12
MATHS
If the function f(x)=x^3-6x^2+a x+b defi...

If the function `f(x)=x^3-6x^2+a x+b` defined on [1,3] satisfies Rolles theorem for `c=(2sqrt(3)+1)/(sqrt(3)` then find the value of `aa n db`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

It is given that for the function f(x)=x^3-6x^2+a x+bon[1,3] , Rolles theorem holds with c=2+1/(sqrt(3))dot Find the values of aa n db , if f(1)=f(3)=0.

If x = sqrt(3)- sqrt(2) find the value of x+(1)/(x)

If (sqrt(3)-1)/(sqrt(3)+1)=x+ysqrt(3) , find the value of x\ a n d\ y

If the function f(x)= x^(3)-6x^(2)+ax+b satisfies Rolle's theorem in the interval [1,3] and f'((2sqrt(3)+1)/(sqrt(3)))=0 , then

It is given that for the function f given by f(x)=x^3+b x^2+a x , x in [1,\ 3] . Rolles theorem holds with c=2+1/(sqrt(3)) . Find the values of a and b .

If the function f(x)=a x^3+b x^2+11 x-6 satisfies conditions of Rolles theorem in [1,3] and f'(2+1/(sqrt(3)))=0, then values of a and b , respectively, are (A) -3,2 (B) 2,-4 (C) 1,-6 (D) none of these

If x = sqrt(3)- sqrt(2) find the value of x^(3)+ (1)/(x^(3))

If x-1/x=3+2sqrt(2) , find the value of x^3-\ 1/(x^3)

If x-1/x=3+2sqrt(2) , find the value of x^3-1/(x^3)

For the function f(x) = x + 1/x, x in [1,3] , the value of c for mean value theorem is