Home
Class 12
MATHS
If varphi(x) is differentiable function...

If `varphi(x)` is differentiable function `AAx in R` and `a in R^+` such that `varphi(0)=varphi(2a),varphi(a)=varphi(3a)a n dvarphi(0)!=varphi(a)` then show that there is at least one root of equation `varphi^(prime)(x+a)=varphi^(prime)(x)in(0,2a)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If varphi(x) is a polynomial function and varphi^(prime)(x)>varphi(x)AAxgeq1a n dvarphi(1)=0, then varphi(x)geq0AAxgeq1 varphi(x)

If varphi(x) is a polynomial function and varphi^(prime)(x)>varphi(x)AAxgeq1a n dvarphi(1)=0, then varphi(x)geq0AAxgeq1 varphi(x)

If varphi(x)=1/(1+e^(-x)) and S=varphi(5)+varphi(4)+varphi(3)+...+varphi(-3)+varphi(-4)+varphi(-5) , then the value of S is. a. 5 b. 11/2 c. 6 d. 13/2

varphi ^2=0 represents

Evaluate: int_(pi/4)^((3pi)/4) varphi/(1-sinvarphi)d varphi

n{P(P(P(varphi)))}=

If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then (a) f^(prime)(a^+)=varphi(a) (b) f^(prime)(a^-)=-varphi(a) (c) f^(prime)(a^+)=f^(prime)(a^-) (d) none of these

If f(x)=|x-a|varphi(x) , where \ varphi(x) is continuous function, then f'(a^+)=varphi(a) (b) f^(prime)(a^-)=-varphi(a) (c) f^(prime)(a^+)=f'(a^-) (d) none of these

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is

Using laws of set algebra, show that If AnnB^(prime)=varphi, show that AsubB