Home
Class 12
MATHS
Consider the function f(x)={xsinpi/x ,f...

Consider the function `f(x)={xsinpi/x ,forx >0 0,forx=0` The, the number of point in (0,1) where the derivative `f^(prime)(x)` vanishes is 0 (b) 1 (c) 2 (d) infinite

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)={{:(xsin(pi)/(x),"for"xgt0),(0,"for"x=0):} Then, the number of points in (0,1) where the derivative f'(x) vanishes is

The function f(x)= xcos(1/x^2) for x != 0, f(0) =1 then at x = 0, f(x) is

Consider the function f(x)=((ax+1)/(bx+2))^(x) , where a,bgt0 , the lim_(xtooo)f(x) is

If f(0)=0,f^(prime)(0)=2, then the derivative of y=f(f(f(x))) at x=0 is 2 (b) 8 (c) 16 (d) 4

If f(0)=0,f^(prime)(0)=2, then the derivative of y=f(f(f(x))) at x=0 is 2 (b) 8 (c) 16 (d) 4

If f(0)=0,f^(prime)(0)=2, then the derivative of y=f(f(f(x))) at x=0 is 2 (b) 8 (c) 16 (d) 4

If f(x)=xsin(1/x) ,\ x!=0 , then the value of the function at x=0 , so that the function is continuous at x=0 , is (a) 0 (b) -1 (c) 1 (d) indeterminate

A differentiable function f(x) satisfies f(0)=0 and f(1)=sin1 , then (where f' represents derivative of f)

Show that the function f(x)={((x^2sin(1/x),if,x!=0),(0,if,x=0)) is differentiable at x=0 and f'(0)=0

if f(x) ={{:(x+2 ,if xlt0),(-x^(2)-2 ,if 0le xlt1),( x ,if xge1):} then the number of points of discontinuity of |f(x)|is (a) 1 (b) 2 (c) 3 (d) none of these