Home
Class 12
MATHS
The value of c in Lagranges theorem for ...

The value of `c` in Lagranges theorem for the function `f(x)=logsinx` in the interval `[pi/6,(5pi)/6]` is (a) `pi/4` (b) `pi/2` (c) `(2pi)/3` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of c in Largrange's theorem for the function f(x)= log_(e) sin x in the interval [ pi//6,5pi//6] is

The solution(s) of the equation cos2x sin6x=cos3x sin5x in the interval [0,pi] is/are pi/6 (b) pi/2 (c) (2pi)/3 (d) (5pi)/6

The function f(x)=-x//2+sinx defined on [-pi//3,\ pi//3] is (a) increasing (b) decreasing (c) constant (d) none of these

sin^-1 (sin ((7pi)/6))= (A) (7pi)/6 (B) pi/6 (C) -pi/6 (D) none of these

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

If f(x)=sin^(-1)cosx , then the value of f(10)+f^(prime)(10) is (a) 11-(pi)/2 (b) (pi)/2-11 (c) (5pi)/2-11 (d) none of these

int_0^pi cos2xlogsinxdx= (A) pi (B) -pi/2 (C) pi/2 (D) none of these

Verify Lagranges mean value theorem for f(x)=x-2sinx on [-pi,\ pi]

The range of f(x)=sec^(-1)((log)_3tanx+(log)_(tanx)3) is (a) [pi/3,pi/2]uu[pi/2,(2pi)/3] (b) [0,pi/2] (c) ((2pi)/3,pi) (d) none of these

If tan^(-1)(cottheta)=2\ theta , then theta= (a) +-pi/3 (b) +-pi/4 (c) +-pi/6 (d) none of these