Home
Class 12
MATHS
Given f(x)=4-(1/2-x)^(2/3),g(x)={("tan"[...

Given `f(x)=4-(1/2-x)^(2/3),g(x)={("tan"[x])/x ,x!=0` 1,x=0` ` , h(x)={x},` `k(x)=5^((log)_2(x+3)).` ` Then in [0,1], lagranges mean value theorem is not applicable to (a)`f` (b) `g` (c) `k` (d) `h` (where [.] and {.} represents the greatest integer functions and fractional part functions, respectively).`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

In the questions, [x]a n d{x} represent the greatest integer function and the fractional part function, respectively. Solve: [x]^2-5[x]+6=0.

If f(x) = [x] , 0<= {x} < 0.5 and f(x) = [x]+1 , 0.5<{x}<1 then prove that f (x) = -f(-x) (where[.] and{.} represent the greatest integer function and the fractional part function, respectively).

If f(x) = [x] , 0<= {x} < 0.5 and f(x) = [x]+1 , 0.5<{x}<1 then prove that f (x) = -f(-x) (where[.] and{.} represent the greatest integer function and the fractional part function, respectively).

Let f(x) = log _({x}) [x] g (x) =log _({x}){x} h (x)= log _({x}) {x} where [], {} denotes the greatest integer function and fractional part function respectively. Domine of h (x) is :

Let f(x) = log _({x}) [x] g (x) =log _({x})-{x} h (x) = log _([x ]) {x} where [], {} denotes the greatest integer function and fractional part function respectively. Domine of h (x) is :

The number of non differentiability of point of function f (x) = min ([x] , {x}, |x - (3)/(2)|) for x in (0,2), where [.] and {.} denote greatest integer function and fractional part function respectively.

If f(x)=(tanx)/(x) , then find lim_(xto0)([f(x)]+x^(2))^((1)/({f(x)})) , where [.] and {.} denotes greatest integer and fractional part function respectively.

Find the inverse of the function: f:(2,3) to (0,1) defined by f(x)=x-[x], where[.] represents the greatest integer function

If f(x)=(x^(3)+x+1)tan(pi[x]) (where, [x] represents the greatest integer part of x), then