Home
Class 12
MATHS
If x+4y=14 is a normal to the curve y^2=...

If `x+4y=14` is a normal to the curve `y^2=alphax^3-beta` at (2,3), then the value of `alpha+beta` is 9 (b) `-5` (c) 7 (d) `-7`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+4y=14 is a normal to the curve y^2=alphax^3-beta at (2,3), then the value of alpha+beta is (a) 9 (b) -5 (c) 7 (d) -7

If 2|sin2alpha|=|tanbeta+cotbeta|,alpha,beta in (pi/2,pi), then the value of alpha+beta is (a) (3pi)/4 (b) pi (c) (3pi)/2 (d) (5pi)/4

If alpha\ a n d\ beta are the roots of 4x^2+3x+7=0 then the value of 1/alpha+1/beta is a) 4/7 b) -3/7 c) 3/7 d) -3/4

If parabolas y^2=lambdax and 25[(x-3)^2+(y+2)^2]=(3x-4y-2)^2 are equal, then the value of lambda is 9 (b) 3 (c) 7 (d) 6

If 3cosalpha=2cos(alpha-2beta), then tan(alpha-beta) tanbeta= (A) 5 (B) -5 (C) 1/5 (D) -1/5

If parabolas y^2=lambdax and 25[(x-3)^2+(y+2)^2]=(3x-4y-2)^2 are equal, then the value of lambda is (a) 9 (b) 3 (c) 7 (d) 6

If alpha and beta are zeroes of 5x^(2)-7x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If 2x +3y = alpha, x -y = beta and kx +15y = r are 3 concurrent normal of parabola y^(2) = lambda x then value of k is (a) 3 (b) 4 (c) 5 (d) 7

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If tangent to curve 2y^3 = ax^2+ x^3 at point (a, a) cuts off intercepts alpha, beta on co-ordinate axes, where alpha^2 + beta^2=61 , then the value of 'a' is equal to (A) 20 (B) 25 (C) 30 (D)-30