Home
Class 12
MATHS
If a variable tangent to the curve x^2y=...


If a variable tangent to the curve `x^2y=c^3` makes intercepts `a , bonx-a n dy-a x e s ,` respectively, then the value of `a^2b` is `27c^3` (b) `4/(27)c^3` (c) `(27)/4c^3` (d) `4/9c^3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If the tangent at any point on the curve x^4 + y^4 = c^4 cuts off intercepts a and b on the coordinate axes, the value of a^(-4/3)+b^(-4/3) is

If a - 2b + 3c= 0 , state the value of a^(3) -8b^(3) + 27c^(3)

If the tangent to the curve 4x^(3)=27y^(2) at the point (3,2) meets the curve again at the point (a,b) . Then |a|+|b| is equal to -

If the maximum and minimum values of y=(x^2-3x+c)/(x^2+3x+c) are 7 and 1/7 respectively then the value of c is equal to (A) 3 (B) 4 (C) 5 (D) 6

If 8^(x+1)=64 , what is the value of 3^(2x+1) ? (a)1 (b) 3 (c) 9 (d) 27

If a+b+c=9\ \ \ a n d\ \ \ a b+b c+c a=26 , find the value of a^3+b^3+c^3-3a b c

If the line joining the points (0,3)a n d(5,-2) is a tangent to the curve y=C/(x+1) , then the value of c is 1 (b) -2 (c) 4 (d) none of these

If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the minimum value of a+b+c is (a) 1 (b) 3 (c) 5 (d) 9

Express the following as mixed fractions : (a) (17)/4 (b) (11)/3 (c) (27)/5 (d) 7/3

The line y=mx+1 is a tangent to the curve y^2=4x if the value of m is(A) 1 (B) 2(C) 3(D) 1/2.