Home
Class 11
MATHS
If Un=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) ...

If `U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n)` , then prove that `U_(n+1)=8U_n-4U_(n-1)dot`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos

Similar Questions

Explore conceptually related problems

Prove that [(n+1)//2]^n >(n !)dot

If U_n=int_0^(pi/2)(sin^2n x)/(sin^2x)dx, then show that U_1,U_2,U_3.......U_n constitute an AP. Hence or otherwise find the value of U_n.

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_5-u_7)/(u_3-u_5)=(u_3)/(u_1) .

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_5-u_7)/(u_3-u_5)=(u_3)/(u_1) .

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

If y^(2)=ax^(2)+2bx+c and u_(n)= int (x^(n))/(y)dx , prove that (n+1)a u_(n+1)+(2n+1)bu_(n)+(n)c u_(n-1)=x^(n)y and deduce that au_(1)=y-b u_(0), 2a^(2)u_(2)=y(ax-3b)-(ac-3b^(2))u_(0) .

If z_1a n dz_2 are complex numbers and u=sqrt(z_1z_2) , then prove that |z_1|+|z_2|=|(z_1+z_2)/2+u|+|(z_1+z_2)/2-u|

If A= [(3 , -4), (1 , -1) ] , then prove that A^n=[(1+2n , -4n), (n , 1-2n) ] , where n is any positive integer.

Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N then the remainder when f (1) + f (2) + f (3) + ..... + f (60) is divided by 9 is.

CENGAGE ENGLISH-BINOMIAL THEOREM-All Questions
  1. Degree of the polynomial [sqrt(x^2+1)+sqrt(x^2-1)]^8+[2/(sqrt(x^2+1)+...

    Text Solution

    |

  2. Least positive integer just greater than (1+0. 00002)^(50000) is.

    Text Solution

    |

  3. If Un=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U(n+1)=8Un-4...

    Text Solution

    |

  4. Prove that the coefficient of x^(n) in the expansion of (1)/((1-x)(1-2...

    Text Solution

    |

  5. The value of (30,0)(30,10)-(30,1)(30,11)+(30,2)(30,12)-.............+(...

    Text Solution

    |

  6. Prove that ^n C1(^n C2)(^n C3)^3(^n Cn)^nlt=((2^n)/(n+1))^(n+1C()2),AA...

    Text Solution

    |

  7. Prove that 1/(m !)^n C0+n/((m+1)!)^n C1+(n(n-1))/((m+2)!)^n C2++(n(n-1...

    Text Solution

    |

  8. If n=12 m(m in N), prove that ^n C0-(^n C2)/((2+sqrt(3))^2)+(^n C4)/(...

    Text Solution

    |

  9. In the expansion of (1 + x)^(n) (1 + y)^(n) (1 + z)^(n) , the sum of t...

    Text Solution

    |

  10. Prove that ^100 C0^(100)C2+^(100)C2^(100)C4+^(100)C4^(100)C6++^(100)C(...

    Text Solution

    |

  11. Prove that sum(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m Cr)=m-1/mdot

    Text Solution

    |

  12. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  13. If b1, b2 bn are the nth roots of unity, then prove that ^n C1dotb1+^n...

    Text Solution

    |

  14. If .^(n+1)C(r+1) :^n Cr :^(n-1)C(r-1)=11 :6:3, then n r=? a. 20 b. 30...

    Text Solution

    |

  15. If the last tem in the binomial expansion of (2^(1/3)-1/(sqrt(2)))^n i...

    Text Solution

    |

  16. Find the last two digits of the number (23)^(14)dot

    Text Solution

    |

  17. The value of x for which the sixth term in the expansion of [2^(log)2s...

    Text Solution

    |

  18. If the 6th term in the expansion of(1/(x^(8/3))+x^2(log)(10)x)^8 is 56...

    Text Solution

    |

  19. The total number of terms which are dependent on the value of x in the...

    Text Solution

    |

  20. In the expansion of (3^(-x//4)+3^(5x//4))^(n) the sum of binomial coe...

    Text Solution

    |