Home
Class 11
MATHS
In the expansion of (1 + x)^(n) (1 + y)^...

In the expansion of `(1 + x)^(n) (1 + y)^(n) (1 + z)^(n)` , the sum of the co-efficients of the terms of degree 'r' is (a) `.^(n^3)C_r` (b) `.^nC_(r^3)` (c) `.^(3n)C_r` (d) `3.^(2n)C_r`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos

Similar Questions

Explore conceptually related problems

Prove that in the expansion of (1+x)^n(1+y)^n(1+z)^n , the sum of the coefficients of the terms of degree ri s^(3n)C_r .

Prove that .^(n)C_(r )+.^(n-1)C_(r )+..+.^(r )C_(r )=.^(n+1)C_(r+1)

Statement-1: If underset(r=1)overset(n)(sum)r^(3)((.^(n)C_(r))/(.^(n)C_(r-1)))^(2)=196 , then the sum of the coeficients of powerr of xin the expansion of the polynomial (x-3x^(2)+x^(3))^(n) is -1. Statement-2: (.^(n)C_(r))/(.^(n)C_(r-1))=(n-r+1)/(r) AA n in N and r in W .

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If sum_(r=1)^(n) r(r+1) = ((n+a)(n+b)(n+c))/(3) , where a gt b gt c , then

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

Show that: .^nC_(n-r)+3.^nC_(n-r+1)+3.^nC_(n-r+2)+^nC_(n-r+3)=^(n+3)C_r .

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

The expression ""^(n)C_(r)+4.""^(n)C_(r-1)+6.""^(n)C_(r-2)+4.""^(n)C_(r-3)+""^(n)C_(r-4)

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

CENGAGE ENGLISH-BINOMIAL THEOREM-All Questions
  1. Prove that 1/(m !)^n C0+n/((m+1)!)^n C1+(n(n-1))/((m+2)!)^n C2++(n(n-1...

    Text Solution

    |

  2. If n=12 m(m in N), prove that ^n C0-(^n C2)/((2+sqrt(3))^2)+(^n C4)/(...

    Text Solution

    |

  3. In the expansion of (1 + x)^(n) (1 + y)^(n) (1 + z)^(n) , the sum of t...

    Text Solution

    |

  4. Prove that ^100 C0^(100)C2+^(100)C2^(100)C4+^(100)C4^(100)C6++^(100)C(...

    Text Solution

    |

  5. Prove that sum(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m Cr)=m-1/mdot

    Text Solution

    |

  6. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  7. If b1, b2 bn are the nth roots of unity, then prove that ^n C1dotb1+^n...

    Text Solution

    |

  8. If .^(n+1)C(r+1) :^n Cr :^(n-1)C(r-1)=11 :6:3, then n r=? a. 20 b. 30...

    Text Solution

    |

  9. If the last tem in the binomial expansion of (2^(1/3)-1/(sqrt(2)))^n i...

    Text Solution

    |

  10. Find the last two digits of the number (23)^(14)dot

    Text Solution

    |

  11. The value of x for which the sixth term in the expansion of [2^(log)2s...

    Text Solution

    |

  12. If the 6th term in the expansion of(1/(x^(8/3))+x^2(log)(10)x)^8 is 56...

    Text Solution

    |

  13. The total number of terms which are dependent on the value of x in the...

    Text Solution

    |

  14. In the expansion of (3^(-x//4)+3^(5x//4))^(n) the sum of binomial coe...

    Text Solution

    |

  15. If n is an integer between 0 and 21, then the minimum value of n!(21-...

    Text Solution

    |

  16. If R is remainder when 6^(83)+8^(83) is divided by 49, then the value ...

    Text Solution

    |

  17. Let aa n db be the coefficients of x^3 in (1+x+2x^2+3x^3)^4a n d(1+x+2...

    Text Solution

    |

  18. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  19. Let a=3^(1//224)+1 and for all n ge 3, let f(n)=""^(n)C(0)a^(n-1)-""...

    Text Solution

    |

  20. If the constant term in the binomial expansion of (x^2-1/x)^n ,n in N...

    Text Solution

    |