Home
Class 11
MATHS
Prove that ^100 C0^(100)C2+^(100)C2^(100...

Prove that `^100 C_0^(100)C_2+^(100)C_2^(100)C_4+^(100)C_4^(100)C_6++^(100)C_(98)^(100)C_(100)=1/2[^(200)C_(98)-^(100)C_(49)]dot`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos

Similar Questions

Explore conceptually related problems

Prove the following identieties using the theory of permutation where C_(0),C_(1),C_(2),……C_(n) are the combinatorial coefficents in the expansion of (1+x)^n,n in N: ""^(100)C_(10)+5.""^(100)C_(11)+10 .""^(100)C_(12)+ 10.""^(100)C_(13)+ 10.""^(100)C_(14)+ 10.""^(100)C_(15)=""^(105)C_(90)

The value of ""^(40)C_(0) xx ""^(100)C_(40) _ ""^(40)C_(1) xx ""^(99)C_(40) + ""^(40)C_(2) xx ""^(98)C_(40) -"……." + ""^(40)C_(40) xx ""^(60)C_(40) is equal to "____" .

Evaluate: ^100C_97

Let t_(100)=sum_(r=0)^(100)(1)/(("^(100)C_(r ))^(5)) and S_(100)=sum_(r=0)^(100)(r )/(("^(100)C_(r ))^(5)) , then the value of (100t_(100))/(S_(100)) is (a) 1 (b) 2 (c) 3 (d) 4

If ""^(100)C_(6)+4." "^(100)C_(7)+6." "^(100)C_(8)+4." "^(100)C_(9)+""^(100)C_(10) has the value equal to " "^(x)C_(y) , then the possible value (s) of x+y can be :

If ^100 C_5+5^(100)C_6+10^(100)C_7+10^(100)C_8+5^(100)C_9+^(100)C_(10) has the value equal to ^n C_r , then least value of (n+r) is equal to 200 (2) 195 (3) 115 (4) 105

The coefficient of x^(53) in the expansion sum_(m=0)^(100)^100C_m(x-3)^(100-m)2^m is (a) 100 C_(47) (b.) 100 C_(53) (c.) -100C_(53) (d.) none of these

The value of sum_(r=0)^50 (.^(100)C_r.^(200)C_(150+r)) is equal to

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+ . . . .+(C_(100))/(101) equals

The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+((100),(50))((200),(200)) equals (where ((n),(r ))="^(n)C_(r) )

CENGAGE ENGLISH-BINOMIAL THEOREM-All Questions
  1. If n=12 m(m in N), prove that ^n C0-(^n C2)/((2+sqrt(3))^2)+(^n C4)/(...

    Text Solution

    |

  2. In the expansion of (1 + x)^(n) (1 + y)^(n) (1 + z)^(n) , the sum of t...

    Text Solution

    |

  3. Prove that ^100 C0^(100)C2+^(100)C2^(100)C4+^(100)C4^(100)C6++^(100)C(...

    Text Solution

    |

  4. Prove that sum(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m Cr)=m-1/mdot

    Text Solution

    |

  5. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  6. If b1, b2 bn are the nth roots of unity, then prove that ^n C1dotb1+^n...

    Text Solution

    |

  7. If .^(n+1)C(r+1) :^n Cr :^(n-1)C(r-1)=11 :6:3, then n r=? a. 20 b. 30...

    Text Solution

    |

  8. If the last tem in the binomial expansion of (2^(1/3)-1/(sqrt(2)))^n i...

    Text Solution

    |

  9. Find the last two digits of the number (23)^(14)dot

    Text Solution

    |

  10. The value of x for which the sixth term in the expansion of [2^(log)2s...

    Text Solution

    |

  11. If the 6th term in the expansion of(1/(x^(8/3))+x^2(log)(10)x)^8 is 56...

    Text Solution

    |

  12. The total number of terms which are dependent on the value of x in the...

    Text Solution

    |

  13. In the expansion of (3^(-x//4)+3^(5x//4))^(n) the sum of binomial coe...

    Text Solution

    |

  14. If n is an integer between 0 and 21, then the minimum value of n!(21-...

    Text Solution

    |

  15. If R is remainder when 6^(83)+8^(83) is divided by 49, then the value ...

    Text Solution

    |

  16. Let aa n db be the coefficients of x^3 in (1+x+2x^2+3x^3)^4a n d(1+x+2...

    Text Solution

    |

  17. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  18. Let a=3^(1//224)+1 and for all n ge 3, let f(n)=""^(n)C(0)a^(n-1)-""...

    Text Solution

    |

  19. If the constant term in the binomial expansion of (x^2-1/x)^n ,n in N...

    Text Solution

    |

  20. The largest value of x for which the fourth tem in the expansion (5^(...

    Text Solution

    |