Home
Class 11
MATHS
Let n be a positive integer and (1+x+x^2...

Let `n` be a positive integer and `(1+x+x^2)^n=a_0+a_1x+ . . . . +a_(2n)x^(2n)dot`
Show that `a_(02) -a_(12)+a_(22)+. . . +a _(2n2)=a_n`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos

Similar Questions

Explore conceptually related problems

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1

Let n be positive integer such that, (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then a_(r) is :

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+....+a_(2n)x^(2n) , then a_0+a_2+a_4+.....+a_(2n) is

If (1-x+x^2)^n=a_0+a_1x+a_2x^2+ .........+a_(2n)x^(2n),\ find the value of a_0+a_2+a_4+........+a_(2n)dot

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 + a_2 +a_4 + …….= (1+ (-13)^n)/(2)

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+x)^n=a_0+a_1x+a_2x^2).....+a_nx^n The sum of the series a_(0) +a_(4) +a_(8)+a_(12)+ …… is

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x^(2n), find the value of a_0+a_3+a_6++ ,n in Ndot

CENGAGE ENGLISH-BINOMIAL THEOREM-All Questions
  1. Given (1-2x+5x^2-10 x^3)(1+x)^n=1+a1x+a2x^2+ and thata1 ^2=2a2 then th...

    Text Solution

    |

  2. Sum of last three digits of the number N=7^(100)-3^(100) is.

    Text Solution

    |

  3. Let n be a positive integer and (1+x+x^2)^n=a0+a1x+ . . . . +a(2n)x^(2...

    Text Solution

    |

  4. sum(r=1)^k(−3)^(r−1) .^(3n)C(2r−1)=0, where k=(3n)/2 and n is an even ...

    Text Solution

    |

  5. The coefficient of the middle term in the binomial expansion in powers...

    Text Solution

    |

  6. If in the expansion of (1+x)^n ,a ,b ,c are three consecutive coeffici...

    Text Solution

    |

  7. If n and k are positive integers, show that 2^k( .^n C0)(.^n Ck)-2^(k-...

    Text Solution

    |

  8. Prove that (25)^(n+1)-24n+5735 is divisible by (24)^2 for all n=1,2,.....

    Text Solution

    |

  9. The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (a).(...

    Text Solution

    |

  10. The coefficient x^5 in the expansion of (1+x)^(21)+(1+x)^(22)++(1+x)^...

    Text Solution

    |

  11. If x^m occurs in the expansion (x+1//x^2)^(2n) , then the coefficient ...

    Text Solution

    |

  12. If the coefficients of 5th, 6th , and 7th terms in the expansion of (1...

    Text Solution

    |

  13. If (1+2x+x^2)^n=sum(r=0)^(2n)ar x^r ,then ar is a.(.^nC2)^2 b. .^n ...

    Text Solution

    |

  14. In the expansion of (x^3-1/x^2)^n, n in N if sum of the coefficients o...

    Text Solution

    |

  15. If the coefficients of rth and (r+1)t h terms in the expansion of (3+7...

    Text Solution

    |

  16. In the expansion of (1+3x+2x^2)^6 , the coefficient of x^(11) is a. 14...

    Text Solution

    |

  17. If n-1Cr=(k^2-3)^nC(r+1), then (a) (-oo,-2] (b) [2,oo) (c) [-sqrt3, s...

    Text Solution

    |

  18. Prove that (3!)/(2(n+3))=sum(r=0)^n(-1)^r((^n Cr)/(^(r+3)Cr))

    Text Solution

    |

  19. If an=sum(r=0)^n1/(nCr), then sum(r=0)^n r/(nCr) equals

    Text Solution

    |

  20. The expression (x+((x^3-1)^(1/2))/2)^5+""(x-((x^3-1)^(1/2))/2)^5 is a ...

    Text Solution

    |