Home
Class 11
MATHS
If Cr stands for nCr, then the sum of ...

If `C_r` stands for `nC_r`, then the sum of the series `(2(n/2)!(n/2)!)/(n !)[C_0^2-2C_1^2+3C_2^2-........+(-1)^n(n+1)C_n^2]` ,where n is an even positive integer, is

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos

Similar Questions

Explore conceptually related problems

If C_r stands for nC_r, then the sum of first (n+1) terms of the series a C_0-(a+d)C_1+(a+2d)C_2-(a+3d)C_3+......, is

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

sum_(r=1)^k(−3)^(r−1) .^(3n)C_(2r−1)=0, where k=(3n)/2 and n is an even integer

C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Show that C_1^2-2C_2^2+3.C_3^2- ……….-2n.C_(2n)^2=(-1)^(n-1).n.C_n where C_r stands for ''^(2n)C_r''

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

If n is a positive integer such that (1+x)^n=^nC_0+^nC_1+^nC_2x^2+…….+^nC_nx^n , for epsilonR . Also .^nC_r=C_r On the basis of the above information answer the following questions the value of .^mC_r.^nC_0+^mC_(r-1).^nC_1+^mC_(r-2).^nC_2+….+^mC_1.^nC_(r-1)+^nC_0^nC_r where m,n, r are positive interges and rltm,rltn= (A) .^(mn)C_r (B) .^(m+n)C_r (C) 0 (D) 1

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

CENGAGE ENGLISH-BINOMIAL THEOREM-All Questions
  1. Given positive integers r gt 1, n gt 2 and that the coefficient of (3...

    Text Solution

    |

  2. The coefficient of x^4 in (x//2-3//x^2)^10 is a.(405)/(256) b. (504)/(...

    Text Solution

    |

  3. If Cr stands for nCr, then the sum of the series (2(n/2)!(n/2)!)/(n...

    Text Solution

    |

  4. The sum underset(m)overset(i=0)sum ({:(10),(i):})({:(20),(m-i):}), (wh...

    Text Solution

    |

  5. The coefficient of X^24in the expansion of (1+X^2 )^12(1+X^12)(1+X^24)

    Text Solution

    |

  6. The term independent of a in the expansion of (1+sqrta+ 1/(sqrta-1))^-...

    Text Solution

    |

  7. The coefficient of x^(53) in the expansion sum(m=0)^(100)^100Cm(x-3)^(...

    Text Solution

    |

  8. The coefficient of the term independent of x in the exampansion of ((x...

    Text Solution

    |

  9. In the expansion of (1+x+x^3+x^4)^10, the coefficient of x^4 is ^40C4 ...

    Text Solution

    |

  10. If coefficient of a^2 b^3 c^4 in(a+b+c)^m (where n in N) is L(L != 0)...

    Text Solution

    |

  11. The last two digits of the number 3^(400) are: (A) 81 (B) 43 (C) ...

    Text Solution

    |

  12. The expression (sqrt(2x^2+1)+sqrt(2x^2-1))^6 + (2/(sqrt(2x^2+1)+sqrt(2...

    Text Solution

    |

  13. The coefficient of x^r[0lt=rlt=(n-1)] in the expansion of (x+3)^(n-1)+...

    Text Solution

    |

  14. If (1+2x +3x^2)^10 = a0 +a1x +a2x^2 + ……+a20x^20 then a1 = ?

    Text Solution

    |

  15. In the expansion of (5^(1//2)+7^(1//8))^(1024), the number of integral...

    Text Solution

    |

  16. For which of the following value of x, 5^(th) term is the numerically ...

    Text Solution

    |

  17. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  18. If the middle term in the expansion of (x/2+2)^8 is 1120, then find t...

    Text Solution

    |

  19. If (1+x)^n=C0+C1x+C2x^2+...+Cn x^n , t h e n C0-(C0+C1)+(C0+C1+C2)-(C0...

    Text Solution

    |

  20. In the expansion of (x^(2) + 1 + (1)/(x^(2)))^(n), n in N,

    Text Solution

    |