Home
Class 11
MATHS
Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^...

Let `(1+x^2)^2(1+x)^n=sum_(k=0)^(n+4)a_k x^k`. If `a_1`, `a_2` and `a_3` are in arithmetic progression, then the possible value/values of `n` is/are a. 5 b. 4 c. `3` d. `2`

Text Solution

AI Generated Solution

To solve the problem, we need to analyze the expression \((1+x^2)^2(1+x)^n\) and find the coefficients \(a_1\), \(a_2\), and \(a_3\) of \(x\), \(x^2\), and \(x^3\) respectively. We will then check the condition that these coefficients are in arithmetic progression. ### Step 1: Expand \((1+x^2)^2\) First, we expand \((1+x^2)^2\): \[ (1+x^2)^2 = 1 + 2x^2 + x^4 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos

Similar Questions

Explore conceptually related problems

Let (1+x^2)^2 . (1+x)^n = Sigma_(k=0)^(n+4) (a_k).x ^k "if" a_1,a_2 & a_3 are in AP find n

Let (1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2, are in A.P. then the value of n is

Let A_1 , A_2 …..,A_3 be n arithmetic means between a and b. Then the common difference of the AP is

If for n in I , n > 10 ;1+(1+x)+(1+x)^2++(1+x)^n=sum_(k=0)^n a_k*x^k , x!=0 then

Let a_1,a_2,a_3,... be in harmonic progression with a_1=5a n da_(20)=25. The least positive integer n for which a_n<0 a. 22 b. 23 c. 24 d. 25

If x^n-1 is divisible by x-k then the least positive integral value of k is(a) 1 (b) 2 (c) 3 (d) 4

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+....+a_(n-1)+3a_n is

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+.......a_(n-1)+2a_n is

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

CENGAGE ENGLISH-BINOMIAL THEOREM-All Questions
  1. The 10th term of (3-sqrt((17)/4+3sqrt(2)))^(20) is (a) a irrational nu...

    Text Solution

    |

  2. For the expansion (xsinp+x^(-1)cosp)^(10),(p in R), The greatest v...

    Text Solution

    |

  3. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  4. The middle term in the expansion of (x//2+2)^8 is 1120, then x in R i...

    Text Solution

    |

  5. If (1+2x+x^2)^n=sum(r=0)^(2n)ar x^r ,then ar is a.(.^nC2)^2 b. .^n ...

    Text Solution

    |

  6. [(^nC0+^n C3+)-1/2(^n C1+^n C2+^n C4+^n C5]^2 + 3/4(^n C1-^n C2+^n C4 ...

    Text Solution

    |

  7. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  8. Let f(x)=a0+a1x+a2x^2+...+an x^n and (f(x))/(1-x)=b0+b1x+b2x^2+...+bn ...

    Text Solution

    |

  9. If (1+x^(2))^(n) = underset(r=0)overset(n)suma(r)x^(r )= (1+x+x^(2)+x^...

    Text Solution

    |

  10. The value of sum(r=1)^(n+1)(sum(k=1)^n "^k C(r-1))( where r ,k ,n in ...

    Text Solution

    |

  11. If (x^2+x+1)/(1-x)=a0+a1x+a2x^2+ ,t h e nsum(r=1)^(50)ar is equal to 1...

    Text Solution

    |

  12. Find dy/dt , if y = (1 - cost)/(1 + cost) is

    Text Solution

    |

  13. The coefficient of x^9 in the expansion of (1+x)(1+ x^2)(1+x^3)....(1...

    Text Solution

    |

  14. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  15. If (1-x)^(-n)=a0+a1x+a2x^2+...+ar x^r+ ,t h e na0+a1+a2+...+ar is equa...

    Text Solution

    |

  16. The value of sum(r=0)^(20)r(20-r)(.^(20) Cr)^2 is equal to a. 400^(...

    Text Solution

    |

  17. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |

  18. If the term independent of x in the (sqrt(x)-k/(x^2))^(10) is 405, the...

    Text Solution

    |

  19. The coefficient of x^2y^3 in the expansion of (1-x+y)^(20) is (20 !)/(...

    Text Solution

    |

  20. The coefficient of x^5 in the expansion of (x^2-x-2)^5 is -83 b. -82 c...

    Text Solution

    |