Home
Class 11
MATHS
If p=(8+3sqrt(7))^n a n df=p-[p],w h e r...

If `p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot]` denotes the greatest integer function, then the value of `p(1-f)` is equal to

A

`1`

B

`2`

C

`2^n`

D

`2^(2n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Define p and f We start with the expression given in the question: \[ p = (8 + 3\sqrt{7})^n \] We also have: \[ f = p - [p] \] where \([p]\) denotes the greatest integer function (GIF) of \(p\). ### Step 2: Identify the conjugate Next, we consider the conjugate of \(8 + 3\sqrt{7}\): \[ q = 8 - 3\sqrt{7} \] Now, we will analyze the product of \(p\) and \(q\). ### Step 3: Calculate \(p \cdot q\) We can compute: \[ p \cdot q = (8 + 3\sqrt{7})^n \cdot (8 - 3\sqrt{7})^n \] Using the difference of squares: \[ p \cdot q = (8^2 - (3\sqrt{7})^2)^n \] Calculating \(8^2\) and \((3\sqrt{7})^2\): \[ 8^2 = 64 \] \[ (3\sqrt{7})^2 = 9 \cdot 7 = 63 \] Thus, \[ p \cdot q = (64 - 63)^n = 1^n = 1 \] ### Step 4: Express \(p\) in terms of \(q\) From the product \(p \cdot q = 1\), we can express \(q\) in terms of \(p\): \[ q = \frac{1}{p} \] ### Step 5: Analyze \(f\) Since \(p\) is a positive quantity and \(q\) is less than 1 (because \(8 - 3\sqrt{7} < 1\)), we know: \[ 0 < q < 1 \] This implies: \[ 0 < f < 1 \] ### Step 6: Calculate \(p(1 - f)\) Now we can compute: \[ p(1 - f) = p \cdot (1 - (p - [p])) \] This simplifies to: \[ p(1 - f) = p \cdot \left(1 - p + [p]\right) = p \cdot \left([p] + 1 - p\right) \] ### Step 7: Substitute \(p\) and \(q\) Since \(f = p - [p]\), we can write: \[ p(1 - f) = p \cdot q \] From our earlier calculation, we found: \[ p \cdot q = 1 \] Thus, \[ p(1 - f) = 1 \] ### Conclusion The value of \(p(1 - f)\) is equal to: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos

Similar Questions

Explore conceptually related problems

Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest integer function, prove that Rf=4^(2n+1)

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

int_0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer function and x in R^+ , is equal to

Evaluate:- int_0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: int_(-5)^5x^2[x+1/2]dx(w h e r e[dot] denotes the greatest integer function).

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_1^(e^6)[(logx)/3]dx ,w h e r e[dot] denotes the greatest integer function.

int_0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] denotes the greatest integer function . then the value of f(1/pi) is

f:(2,3)vec(0,1)d efin e db yf(x)=x-[x],w h e r e[dot] represents the greatest integer function.

CENGAGE ENGLISH-BINOMIAL THEOREM-All Questions
  1. The sum of rational term in (sqrt(2)+root3 3 + root6 5)^(10) is equal ...

    Text Solution

    |

  2. The value of sum(r=0)^(10)(r)^(20)Cr is equal to: a. 20(2^(18)+^(19)C...

    Text Solution

    |

  3. If p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot] denotes the greatest i...

    Text Solution

    |

  4. Statement 1: Greatest term in the expansion of (1+x)^(12), when x=11//...

    Text Solution

    |

  5. Statement 1: Remainder w h e n3456^2222 is divided by 7 is 4. Statemen...

    Text Solution

    |

  6. the value of x , for which the 6th term in the expansions of[2^(log2)...

    Text Solution

    |

  7. Each question has four choices a, b, c and d, out of which only one is...

    Text Solution

    |

  8. The number 51^(49)+51^(48)+51^(47)+........+51+1 is divisible by a. 10...

    Text Solution

    |

  9. If sum(r=0)^(n) (r)/(""^(n)C(r))= sum(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C...

    Text Solution

    |

  10. If (1+x)^n=C0+C1x+C2x^2+.......+Cn x^n , then show that the sum of th...

    Text Solution

    |

  11. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  12. If sum(r=0)^n{ar(x-alpha+2)^r-br(alpha-x-1)^r}=0, then prove that bn-(...

    Text Solution

    |

  13. Let a=(2^(1//401)-1) and for each ngeq2,l e tbn=^n C1+^n C2dota+^n C3...

    Text Solution

    |

  14. Prove that sum(r=0)^n^n Cr(-1)^r[i^r+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+...

    Text Solution

    |

  15. Find the coefficient of x^n in (1+x/(1!)+(x^2)/(2!)+........+(x^n)/(n ...

    Text Solution

    |

  16. Prove that (^n C0)/x-(^n C0)/(x+1)+(^n C1)/(x+2)-+(-1)^n(^n Cn)/(x+n)=...

    Text Solution

    |

  17. If n is a positive integer, prove that 1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(...

    Text Solution

    |

  18. Given, sn=1+q+q^2+.....+q^n ,Sn=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^n...

    Text Solution

    |

  19. The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+oo will be a. x^n b. x^(-...

    Text Solution

    |

  20. sum(k=1)^ook(1-1/n)^(k-1)=>? a.n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

    Text Solution

    |