Home
Class 12
MATHS
Function f(x)=|x|-|x-1| is monotonically...

Function `f(x)=|x|-|x-1|` is monotonically increasing when (a) `x<0` (b) `x >1` (c) `x<1` (d) 0 < x < 1

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Function f(x)=|x|-|x-1| is monotonically increasing when (a) x 1 (c) x<1 (d) x in (0,1)

Function f(x)=x^3-27 x+5 is monotonically increasing when (a) x 3 (c) xlt=-3 (d) |x|geq3

Function f(x)=2x^3-9x^2+12 x+29 is monotonically decreasing when (a) x 2 (c) x >3 (d) x in (1,2)

In the interval (1,\ 2) , function f(x)=2|x-1|+3|x-2| is (a) monotonically increasing (b) monotonically decreasing (c) not monotonic (d) constant

the function (|x-1|)/x^2 is monotonically decreasing at the point

f(x)=2x-tan^(-1)x-log{x+sqrt(x^2+1)} is monotonically increasing when (a) x >0 (b) x<0 (c) x in R (d) x in R-{0}

Function f(x)=cosx-2\ lambda\ x is monotonic decreasing when (a) lambda>1//2 (b) lambda 2

If f(x)=k x^3-9x^2+9x+3 monotonically increasing in R , then

Let f(x) be and even function in R. If f(x) is monotonically increasing in [2, 6], then

If the function f(x)=(x^2)/2+lnx+a x is always monotonically increasing in its domain then the least value of a is 2 (b) -2 (c) -1 (d) 1