Home
Class 12
MATHS
The function f(x)=sum(k=1)^5 (x-K)^2 ass...

The function `f(x)=sum_(k=1)^5 (x-K)^2` assumes then minimum value of `x` given by (a) `5` (b) `5/2` (c) `3` (d) `2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sum_(r=1)^5(x-r)^2 assuming minimum value at x= (a) 5 (b) 5/2 (c) 3 (d) 2

The function f(x)=sum_(r=1)^5(x-r)^2 assuming minimum value at x= (a) 5 (b) 5/2 (c) 3 (d) 2

The function f(x)=x^(5)-5x^(4)+5x^(3) find maximum and minimum value

The minimum value of |x-3|+|x-2|+|x-5| is (A) 3 (B) 7 (C) 5 (D) 9

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

The value of f(0), so that the function f(x)=((27-2x)^(1/3)-3)/(9-3(243+5x)^(1//5))(x!=0) is continuous, is given by (a) 2/3 (b) 6 (c) 2 (d) 4

The value of f(0), so that the function f(x)=((27-2x)^(1/3)-3)/(9-3(243+5x)^(1//5))(x!=0) is continuous, is given by (a) 2/3 (b) 6 (c) 2 (d) 4

Minimum value of of f (x)=2x^(2)-4x+5is

If the function f(x)=(Ksinx+2cosx)/(sinx+cosx) is strictly increasing for all values of x , then (a) K (b) K >1 (c) K (d) K >2

If x^(140)+2x^(151)+k is divisible by x+1 , then the value of k is=? (a) 1 (b) -3 (c) 2 (d) -2