Home
Class 12
MATHS
Let f(x)=|x^2-3x-4|,-1lt=xlt=4 Then f(x)...

Let `f(x)=|x^2-3x-4|,-1lt=xlt=4` Then `f(x)` is monotonically increasing in `[-1,3/2]` `f(x)` monotonically decreasing in `(3/2,4)` the maximum value of `f(x)i s(25)/4` the minimum value of `f(x)` is `0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) =x - tan^(-1)x. Prove that f(x) is monotonically increasing for x in R

Let f(x) = tan^-1 (g(x)) , where g (x) is monotonically increasing for 0 < x < pi/2.

f(x)=4tanx-tan^2x+tan^3x ,x!=npi+pi/2, (a)is monotonically increasing (b)is monotonically decreasing (c)has a point of maxima (d)has a point of minima

In the interval (1,\ 2) , function f(x)=2|x-1|+3|x-2| is (a) monotonically increasing (b) monotonically decreasing (c) not monotonic (d) constant

If f(x)=x^3+4x^2+ax+5 is a monotonically decreasing function of x in the largest possible interval (-2,-2//3), then the value of a is

Function f(x)=x^3-27 x+5 is monotonically increasing when (a) x 3 (c) xlt=-3 (d) |x|geq3

Let f(x) =x^(3)-3x +2. Examine the monotonicity of function at points x=0.1,2

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)

If f(x)=3x^(2)+4x-1 , then find the approximate value of f(3.1) .

If y=f(x)=3x^2+2x+4 , then value of y at x=f(2) will be