Home
Class 12
MATHS
The base of prism is equilateral triangl...

The base of prism is equilateral triangle. The distance from the centre of one base to one of the vertices of the other base is `ldot` Then altitude of the prism for which the volume is greatest is (a)`l/2` (b) `l/(sqrt(3))` (c) `l/3` (d) `l/4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In a regular triangular prism the distance from the centre of one base to one of the vertices of the other base is e. The altitude of the prism for which the volume is greatest, is :

The equation of an altitude of an equilateral triangle is sqrt3x + y = 2sqrt3 and one of its vertices is (3,sqrt3) then the possible number of triangles is

The equation of an altitude of an equilateral triangle is sqrt3x + y = 2sqrt3 and one of its vertices is (3,sqrt3) then the possible number of triangles is a. 1 b. 2 c. 3 4. 4

A ray of light incident on an equilateral triangular glass prism of mu = sqrt(3) moves parallel to the base of the prism inside it. What is the angle of incidence for this ray ?

If the equation of base of an equilateral triangle is 2x-y=1 and the vertex is (-1,2), then the length of the sides of the triangle is sqrt((20)/3) (b) 2/(sqrt(15)) sqrt(8/(15)) (d) sqrt((15)/2)

What is the angle of incidence for an equilateral prism of refractive index sqrt(3) so that the ray si parallel to the base inside the prism?

Average distance of the earth from the sun is L_(1) . If one year of the earth =D days, one year of another planet whose average distance from the sun is L_(2) will be

If l_(1),l_(2),l_(3) are the lengths of the emitter, base and collector of a transistor then

The equation of the base of an equilateral triangle A B C is x+y=2 and the vertex is (2,-1) . The area of the triangle A B C is: (sqrt(2))/6 (b) (sqrt(3))/6 (c) (sqrt(3))/8 (d) None of these

The distance between the circumcenter and the orthocentre of the triangle whose vertices are (0,0),(6,8), and (-4,3) is Ldot Then the value of 2/(sqrt(5))L is_________