Home
Class 12
MATHS
The maximum value of the function f(x)=2...

The maximum value of the function `f(x)=2x^3-15 x^2+36 x-48` on the set `A={x|x^ 2+20lt=9x}` is______.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the set S={x in R: x^(2)+30 le 11x} is:

The maximum value of the function f(x) given by f(x)=x(x-1)^2,0ltxlt2 , is

Find the maximum and minimum values of the function f(x)=tanx-2x .

Find the least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is ?

Find the minimum or maximum value of the function if f(x) = 9x^2+12x+2

Find the absolute maximum and minimum values of a function f given by f(x)=2x^3-15 x^2+36 x+1 on the interval [1,\ 5] .

The domain of the function f(x)=1/(9-x^2)+log_(20)(x^3-3x) is

Find the maximum and minimum values of the following functions. f(x)=2x^(3)-15x^(2)+36x+10

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is