Home
Class 12
MATHS
Let f(x),xgeq0, be a non-negative contin...

Let `f(x),xgeq0,` be a non-negative continuous function. If `f^(prime)(x)cosxlt=f(x)sinxAAxgeq0,` then find `f((5pi)/3)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x),xgeq0, be a non-negative continuous function, and let f(x)=int_0^xf(t)dt ,xgeq0, if for some c >0,f(x)lt=cF(x) for all xgeq0, then show that f(x)=0 for all xgeq0.

If f^(prime)(x)=3x^2-2/(x^3) and f(1)=0 , find f(x) .

Let f(x) be a non negative continuous and bounded function for all xge0 .If (cos x)f(x) lt (sin x- cosx)f(x) forall x ge 0 , then which of the following is/are correct?

Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x/7 AA x in R, then f(42) is

If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0 , then find the value of int_(0)^(a)(dx)/(1+f(x)) .

If a continuous function f on [0, a] satisfies f(x)f(a-x)=1, a >0, then find the value of int_0^a(dx)/(1+f(x))

Let f(0)=f'(0)=0 and f^(primeprime)(x)=sec^4x+4 then find f(x)

If f(x) is continuous in [0,pi] such that f(pi)=3 and int_0^(pi/2)(f(2x)+f^(primeprime)(2x))sin2x dx=7 then find f(0).

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then int_0^a dx/(1+e^(f(x)))= (A) a (B) a/2 (C) 1/2f(a) (D) none of these

Let [x] denote the integral part of x in R and g(x) = x- [x] . Let f(x) be any continuous function with f(0) = f(1) then the function h(x) = f(g(x) :