Home
Class 12
MATHS
Prove that sin1>cos(sin1)dot Also, show ...

Prove that `sin1>cos(sin1)dot` Also, show that the equation `sin("cos"(sinx))=cos("sin"(cosx))` has only one solution in `[0,pi/2]dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that, sin3x + cos3x = (cosx-sinx)(1+4sinx cosx)

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

Prove that (sin5x-2sin3x+sinx)/(cos5x-cosx)=tanx

Prove that the identities, sin^-1 cos(sin^-1x)+cos^-1 sin(cos^-1x)=pi/2 , |x|<=1

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

The equation 2 sin^(2) (pi/2 cos^(2) x)=1-cos (pi sin 2x) is safisfied by

The equation 1+sin^2 ax = cos x has a unique solution then a is

Find the number of solution of the equation 1+e^(cot^2x)=sqrt(2|sinx|-1)+(1-cos2x)/(1+sin^4x) for x in (0,5pi)dot

Find the number of solution of the equation 1+e^cot^(2x)=sqrt(2|sinx|-1)+(1-cos2x)/(1+sin^4x)forx in (0,5pi)dot

Find the number of solution of sin^2xcos^2x=1+cos^2xsin^4x in the interval [0,2pi]dot