Home
Class 12
MATHS
Iff(x)={sin^(-1)(sinx),x >0pi/2,x=0,t h ...

`Iff(x)={sin^(-1)(sinx),x >0pi/2,x=0,t h e ncos^(-1)(cosx),x<0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

Differentiate the following function with respect to x : sin^(-1)(sinx),x in [0,2pi] cos^(-1)(cosx),x in [0,2pi] tan^(-1)(tanx),x in [0,pi]-{pi/2}

If A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x), then

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to a) -cosx (b) -sinx c) int_0^x(x-t)f(t)dt (d) 0

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|, then int f(x) dx is equal to

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(primeprime)(x)+f(x) is equal to (a) -cosx (b) -sinx (c) int_0^x(x-t)f(t)dt (d) 0