Home
Class 12
MATHS
Delta = |(a, a^2, 0),(1, 2a+b,(a+b)),(0,...

`Delta = |(a, a^2, 0),(1, 2a+b,(a+b)),(0, 1, 2a+3b)|` is divisible by a.`a+b` b. `a+2b` c. `2a+3b` d. `a^2`

A

`a+b `

B

`a+2b`

C

`2a+3b`

D

`a^(2)`

Text Solution

AI Generated Solution

To solve the determinant \( \Delta = |(a, a^2, 0),(1, 2a+b,(a+b)),(0, 1, 2a+3b)| \) and determine which of the given options it is divisible by, we can follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ \Delta = \begin{vmatrix} a & a^2 & 0 \\ 1 & 2a+b & a+b \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

/_\=|(a,a^2,0),(1,2a+b,a+b),(0,1,2a+3b)| is divisible by a+b b. a+2b c. 2a+3b d. a^2

The determinant Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))| is divisible by

If a >0 and discriminant of a x^2+2b x+c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

If [(a-b,2a+c),(2a-b,3c+d)]=[(-1, 5),( 0, 13)] , find the value of bdot

If Delta_1=|(1, 1 ,1),(a, b, c ),(a^2,b^2,c^2)|,Delta_2=|(1,b c, a),(1,c a, b),(1,a b, c)|,t h e n (a) Delta_1+Delta_2=0 (b) Delta_1+2Delta_2=0 (c) Delta_1=Delta_2 (d) none of these

Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

If a=2b ,\ then a : b= (a) 2:1 (b) 1:2 (c) 3:4 (d) 4:3

The medians A D\ a n d\ B E of a triangle with vertices A(0, b),\ B(0,0)\ a n d\ C(a ,0) are perpendicular to each other, if a=b/2 b. b=a/2 c. a b=1 d. a=+-sqrt(2)b

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Each question has four choices a, b, c and d, out of which only one is...

    Text Solution

    |

  2. If a ,b ,c in R , then find the number of real roots of the equat...

    Text Solution

    |

  3. Delta = |(a, a^2, 0),(1, 2a+b,(a+b)),(0, 1, 2a+3b)| is divisible by a....

    Text Solution

    |

  4. Without expanding at any stage, prove that the value of each of the...

    Text Solution

    |

  5. If a,b,c are positive and are the pth, qth rth terms respectively of a...

    Text Solution

    |

  6. If the entries in a 3xx3 determinant are either 0 or 1, then the grea...

    Text Solution

    |

  7. The value of the determinant of n^(t h) order, being given by |[x, 1, ...

    Text Solution

    |

  8. Prove that a!=0,|[x+a, x,x],[x,x+a,x],[x,x,x+a^2]|=0 represents a stra...

    Text Solution

    |

  9. If =|[a b c, b^2c,c^2b],[ a b c,c^2a, c a^2],[a b c, a^2b,b^2a]|=0,(a ...

    Text Solution

    |

  10. The value of |[yz, z x,x y],[ p,2p,3r],[1, 1, 1]|,w h e r ex ,y ,z ar...

    Text Solution

    |

  11. Show that the determinant |a^2+b^2+c^2b c+c a+a bb c+c a+a bb c+c a+a ...

    Text Solution

    |

  12. If x!=0,y!=0,z!=0 and |[1+x,1,1],[1+y,1+2y,1],[1+z,1+z,1+3z]|=0, then ...

    Text Solution

    |

  13. If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, th...

    Text Solution

    |

  14. Prove that |2alpha+beta+gamma+deltaalphabeta+gammadelta alpha+beta+g...

    Text Solution

    |

  15. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  16. The value of the determinant |{:(1,,1,,1),(.^(m)C(1),,.^(m+1)C(1),...

    Text Solution

    |

  17. Solve the equation |[a-x, c, b], [ c, b-x, a], [b, a, c-x]|=0 where a...

    Text Solution

    |

  18. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  19. Consider the set A of all determinants of order 3 with entries 0 or 1 ...

    Text Solution

    |

  20. Solve: |[x^2-1, x^2+2x+1, 2x^2+3x+1], [2x^2+x-1, 2x^2+5x-3, 2x^2+4x-3...

    Text Solution

    |