Home
Class 12
MATHS
Prove that for any two numbers x1 and x2...

Prove that for any two numbers `x_1` and `x_2`. `(e^(2x_1)+e^(x_2))/3> e^((2x_1+x_2)/3)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that for any two numbers x_(1) and x_(2) (2e^(x)+e^(x))/(3)gte(2x_(1)+x_(2))/(3)

Evaluate: int(e^(2x)-2e^x)/(e^(2x)+1)dx

Prove that e^(x) ge 1 +x and hence e^(x) +sqrt(1+e^(2x))ge(1+x)+sqrt(2+2x+x^(2)) forall x in R

Choose the correct answer intx^2e^(x^3)dx equals(A) 1/3e^(x^3) +C (B) 1/3e^(x^2)+C (C) 1/2e^(x^3)+C (D) 1/2e^(x^2)+C

Integrate the functions (e^(2x)-1)/(e^(2x)+1)

Integrate the functions (e^(2x)-1)/(e^(2x)+1)

Prove that (d^n)/(dx^n)(e^(2x)+e^(-2x))=2^n[e^(2x)+(-1)^n e^(-2x)]

Prove that (d^n)/(dx^n)(e^(2x)+e^(-2x))=2^n[e^(2x)+(-1)^n e^(-2x)]

Prove that (d^n)/(dx^n)(e^(2x)+e^(-2x))=2^n[e^(2x)+(-1)^n e^(-2x)]

Evaluate: int1/(2\ e^(2x)+3\ e^x+1)\ dx