Home
Class 12
MATHS
Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) ...

Let `f(x)=(1+b^2)x^2+2b x+1` and let `m(b)` the minimum value of `f(x)` as `b` varies, the range of `m(b)` is (A) `[0,1]` (B) `(0,1/2]` (C) `[1/2,1]` (D) `(0,1]`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) be the minimum value of f(x)dot As b varies, the range of m(b) is (a) [0,} b. (0,1/2) c. 1/2,1 d. (0,1]

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

Let f(x)=a+2b cos^(-1)x, b gt0 . If domain and range of f(x) are the same set, then (b-a) is equal to :

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let f(x) = a x^2 + bx + c , where a, b, c in R, a!=0 . Suppose |f(x)| leq1, x in [0,1] , then

Let f be a real valued function defined by f(x)=(e^x-e^(-|x|))/(e^x+e^(|x|)) , then the range of f(x) is: (a)R (b) [0,1] (c) [0,1) (d) [0,1/2)

Let x ,\ y be two variables and x >0,\ \ x y=1 , then minimum value of x+y is (a) 1 (b) 2 (c) 2 1/2 (d) 3 1/3

If a , b >0 , then minimum value of y=(b^2)/(a-x)+(a^2)/x in (0,a) is (a) (a+b)/a (b) (a b)/(a+b) (c) 1/a+1/b (d) ((a+b)^2)/a

let f(x)={(ax+1, if x le 1),(3, if x=1),(bx^2+1,if x > 1)) if f(x) is continuous at x=1 then value of a-b is (A) 0 (B) 1 (C) 2 (D) 4

Let f(x)={(e^x-1+ax)/x^2, x>0 and b, x=0 and sin(x/2)/x , x<0 , then