Home
Class 12
MATHS
Consider P(x) to be a polynomial of degr...

Consider `P(x)` to be a polynomial of degree 5 having extremum at `x=-1,1,` and `("lim")_(xvec0)((p(x))/(x^3)-2)=4` . Then the value of `[P(1)]` is (where [.] represents greatest integer function)___

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let p(x) be a polynomial of degree 4 having extremum at x = 1,2 and lim_(x->0)(1+(p(x))/x^2)=2. Then find the value of p(2).

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

Evaluate: ("lim")_(xvec0)(tanx)/x where [dot] represents the greatest integer function

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Evaluate: [("lim")_(xrarr0)(tan^(-1)x)/x], where [.]represent the greatest integer function

Find ("lim")_(xvec0){tan(pi/4+x)}^(1//x)

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

If f(x)=[x](sin kx)^(p) is continuous for real x, then (where [.] represents the greatest integer function)