Home
Class 12
MATHS
The function f(x) = sin ^(4)x+ cos ^(4)x...

The function `f(x) = sin ^(4)x+ cos ^(4)x ` increases, if

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = sin ^(-1)(cos x) is

Show that the function f(x)=sin^(4) x+ cos^(4) x (i) is decreasing in the interval [0,pi/4] . (ii) is increasing in the interval [pi/4,pi/2] .

The function f(x)=sin^4x+cos^4x increasing in interval

Period of f(x) = sin^4 x + cos^4 x

Period of f(x) = sin^4 x + cos^4 x

If x in (0,pi/2) , then the function f(x)= x sin x +cosx +cos^(2)x is (a) Increasing (b) Decreasing (c) Neither increasing nor decreasing (d) None of these

The function f(x)=(sin^4x+cos^4x)/(x+tanx) is :

The function f(x)=sqrt(3)sin x-cos x will increase monotically in the interval(s)

Separate the intervals [0, (pi)/(2)] into sub intervals in which f(x)= sin^(4)x + cos^(4)x is increasing or decreasing.

The function f(x) = 4 sin^(3) x - 6 sin^(2) x + 12 sin x + 100 is strictly