Home
Class 12
MATHS
If l1^2+m1^2+n1^2=1 etc., and l1 l2+m1...

If `l_1^2+m_1^2+n_1^2=1` etc., and `l_1 l_2+m_1 m_2+n_1 n_2 = 0`, etc. and `Delta=|(l_1,m_1,n_1),(l_2,m_2,n_2),(l_3,m_3,n_3)|` then

Answer

Step by step text solution for If l_1^2+m_1^2+n_1^2=1 etc., and l_1 l_2+m_1 m_2+n_1 n_2 = 0, etc. and Delta=|(l_1,m_1,n_1),(l_2,m_2,n_2),(l_3,m_3,n_3)| then by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

If l_(i)^(2)+m_(i)^(2)+n_(i)^(2)=1 , (i=1,2,3) and l_(i)l_(j)+m_(i)m_(j)+n_(i)n_(j)=0,(i ne j,i,j=1,2,3) and Delta=|{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}| then

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are

Two lines with direction cosines l_1,m_1,n_1 and l_2,m_2,n_2 are at righat angles iff (A) l_1l_2+m_1m_2+n_1n_2=0 (B) l_1=l_2,m_1=m_2,n_1=n_2 (C) l_1/l_2=m_1/m_2=n_1/n_2 (D) l_1l_2=m_1m_2=n_1n_2

If three mutually perpendicular lines have direction cosines (l_1,m_1,n_1),(l_2,m_2,n_2) and (l_3 ,m_3, n_3) , then the line having direction ratio l_1+l_2+l_3,m_1+ m_2+m_3, and n_1 + n_2 + n_3 , make an angle of

If l_(1), m_(1), n_(1), l_(2), m_(2), n_(2) and l_(3), m_(3), n_(3) are direction cosines of three mutuallyy perpendicular lines then, the value of |(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3))| is

The direction ratios of the bisector of the angle between the lines whose direction cosines are l_1,m_1,n_1 and l_2,m_2,n_2 are (A) l_1+l_2,m_1+m_2+n_1+n_2 (B) l_1-l_2,m_1-m_2-n_1-n_2 (C) l_1m_2-l_2m_1,m_1n_2-m_2n_1,n_1l_2-n_2l_1 (D) l_1m_2+l_2m_1,m_1n_2+m_2n_1,n_1l_2+n_2l_1

If vec a and vec b are two non-collinear vectors, show that points l_1 vec a+m_1 vec b ,l_2 vec a+m_2 vec b and l_3 vec a+m_3 vec b are collinear if |(l_1,l_2,l_3),(m_1,m_2,m_3),( 1, 1, 1)|=0.

Prove that the three lines from O with direction cosines l_1, m_1, n_1: l_2, m_2, n_2: l_3, m_3, n_3 are coplanar, if l_1(m_2n_3-n_2m_3)+m_1(n_2l_3-l_2n_3)+n_1(l_2m_3-l_3m_2)=0

The direction cosines of a line equally inclined to three mutually perpendiclar lines having direction cosines as l_(1),m_(1),n_(1),l_(2),m_(2),n_(2) and l_(3), m_(3),n_(3) are