Home
Class 12
MATHS
The maximum value of x^4e^ (-x^2) is (...

The maximum value of `x^4e^ (-x^2)` is (A) `e^2` (B) `e^(-2)` (C) `12 e^(-2)` (D) `4e^(-2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of (logx)/x is (a) 1 (b) 2/e (c) e (d) 1/e

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The value of int_0^1e^(x^2-x) dx is (a) 1 (c) > e^(-1/4) (d) < e^(-1/4)

The minimum value of f(x)=int_0^4e^(|x-t|)dt where x in [0,3] is : (A) 2e^2-1 (B) e^4-1 (C) 2(e^2-1) (D) e^2-1

The value of lim_(x rarr 1)(2-x)^(tan((pix)/2)) is (a) e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d)

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The value of the integral int_-a^a (x e^(x^2))/(1+x^2)dx is (A) e^(a^2) (B) 0 (C) e^(-a^2) (D) a

The value of lim_(x->1)(2-x)^(tan((pix)/2)) is e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)