Home
Class 12
MATHS
The minimum value of e^((2x^2-2x+1)sin^(...

The minimum value of `e^((2x^2-2x+1)sin^(2)x)` is a. `e` (b) `1/e` (c) 1 (d) 0

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of x\ (log)_e x is equal to e (b) 1//e (c) -1//e (d) 2e (e) e

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The minimum value of x/((log)_e x) is e (b) 1//e (c) 1 (d) none of these

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

Find the minimum value of (sec^(-1)x)^2+("c o s e c"^(-1)x)^2

The value of int_0^1e^(x^2-x) dx is (a) 1 (c) > e^(-1/4) (d) < e^(-1/4)

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d)

The value of (lim)_(x->0)(e^(x^2)-e^x+x)/(1-cos2x) is

The minimum value of f(x)=int_0^4e^(|x-t|)dt where x in [0,3] is : (A) 2e^2-1 (B) e^4-1 (C) 2(e^2-1) (D) e^2-1