Home
Class 12
MATHS
The maximum value of f(x)=x/(1+4x+x^2) i...

The maximum value of `f(x)=x/(1+4x+x^2)` is `-1/4` (b) `-1/3` (c) `1/6` (d) `1/6`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of f(x)=x/(4-x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

The maximum value of f(x)=x/(4+x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

The maximum value of f(x)=x/(4-x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

The maximum value of the function f(x) = (1)/( 4x^(2) + 2 x + 1) is

The value of lim_(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is 4 (b) 1/2 (c) 2 (d) 1/4

If 2x=-1+sqrt(3)i , then the value of (1-x^2+x)^6-(1-x+x^2)^6 is 32 (b) -64 (c) 64 (d) 0

If f(x)=cos(logx), then value of f(x) f(4)-1/2{f(x/4)+f(4x)} is (a) 1 (b) -1 (c) 0 (d) +- 1

If f(x)=x^4tan(x^3)-x1n(1+x^2), then the value of (d^4(f(x)))/(dx^4) at x=0 is 0 (b) 6 (c) 12 (d) 24

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4