Home
Class 12
MATHS
The maximum value of the function f(x)=s...

The maximum value of the function `f(x)=sin(x+pi/6)+cos(x+pi/6)` in the interval `(0,pi/2)` occurs at (a) `pi/(12)` (b) `pi/6` (c) `pi/4` (d) `pi/3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest value of the function f(x)=(sin2x)/(sin(x+pi/4)) on the interval (0,pi/2) \ i s

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

The period of the function f(x)=sin((2x+3)/(6pi)) , is

The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2)) is

The maximum value of sin(x+pi/5)+cos(x+pi/5), where x in (0, pi/2), is attained at

Show that f(x)=sin x(1+cosx) is maximum at x=pi/3 in the interval [0,pi]dot

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

The solution(s) of the equation cos2x sin6x=cos3x sin5x in the interval [0,pi] is/are pi/6 (b) pi/2 (c) (2pi)/3 (d) (5pi)/6

The least value of the function f(x)= 2cosx +x in the closed interval [0,pi/2] is: A. 2 B. pi/6 + sqrt3 C. pi/2 D. The least value does not exist