Home
Class 12
MATHS
If intsqrt(1+sinx)f(x)dx=2/3(1+sinx)^(3/...

If `intsqrt(1+sinx)f(x)dx=2/3(1+sinx)^(3/2)+c ,t h e nf(x)e q u a l` `cosx` (b) `sinx` (c) `tanx` (d) 1

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos

Similar Questions

Explore conceptually related problems

"If " int sqrt(1+sinx) f(x)dx=(2)/(3)(1+sinx)^(3//2)+c, " then " f(x) " equals "

int(e^(-x/2)sqrt(1-sinx))/(1+cosx)dx

If intsqrt(1-cosx)f(x)dx=2/3(1-cosx)^(3//2)+c where c is constant of integration then f(x) equals:

int (sinx-2/3+e^x) dx

intx^2/(xsinx+cosx)^2dx=-(xsecx)/(xsinx+cosx)+f(x)+c , then f(x) may be (A) sinx (B) xsinx (C) tanx (D) cotx

int e^x ((1+sinx)/(1+cosx))dx=

int(cosx)/((1+sinx)(2+sinx))dx

If int(cosx-sinx)/(sqrt(8-sin2x))dx=sin^(-1)((sinx+cosx)/(a))+C then a =

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(primeprime)(x)+f(x) is equal to (a) -cosx (b) -sinx (c) int_0^x(x-t)f(t)dt (d) 0

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to a) -cosx (b) -sinx c) int_0^x(x-t)f(t)dt (d) 0