Home
Class 12
MATHS
Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x...

Let `inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot` Then `inte^xf(x)dx` is

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos

Similar Questions

Explore conceptually related problems

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

int[f(a x+b)]^nf^(prime)(a x+b)dx

If int f(x)dx=psi(x) , then int x^5f(x^3)dx

int_(0)^(a)f(x)dx

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: inte^x x^x(2+logx)= (A) e^x x^xlogx+C (B) e^x+x^x+C (C) e^x x(logx)^2+C (D) e^x.x^x+C

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int(e^x(2-x^2))/((1-x)sqrt(1-x^2))dx (A) e^xsqrt((1-x)/(1+x))+C (B) e^xsqrt((1+x)/(1-x))+C (C) e^xsqrt((2-x)/(2+x))+C (D) none of these