Home
Class 12
MATHS
Consider the determinant Delta=|[a1+b1x^...

Consider the determinant `Delta`=`|[a_1+b_1x^2,a_1x^2+b_1,c_1],[a_2+b_2x^2,a_2x^2+b_2,c_2],[a_3+b_3x^2,a_3x^2+b_3,c_3]| = 0`, `\ w h e r e \ a_i ,b_i , c_i in R \ (i = 1,2,3) \ a n d \ x in R`.
Statement 1: The value of `x` satisfying `Delta=0` are `x=1,-1.`
Statement 2: If `|[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]|=0,t h e n \ Delta=0.`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Prove that the value of each the following determinants is zero: |[a_1,l a_1+mb_1,b_1],[a_2,l a_2+mb_2,b_2],[a_3,l a_3+m b_3,b_3]|

If w is a complex cube root of unity, then value of =|[a_1+b_1w, a_1w^2+b_1,c_1+b_1 w],[ a_2+b_2w, a_2w^2+b_2,c_2+b_2 w],[ a_3+b_3w ,a_3w^2+b_3,c_3+b_3 w] | is a. 0 b. -1 c. 2 d. none of these

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and A_2,B_2,C_2 are respectively cofactors of a_2,b_2,c_2 then a_1A_2+b_1B_2+c_1C_2 is

|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 then the system of equations a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0, a_3x+b_3y+c_3z=0 has

If x in R,a_(i),b_(i),c_(i) in R for i=1,2,3 and |{:(a_(1)+b_(1)x,a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3)):}|=0 , then which of the following may be true ?

If Delta =|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| then the value of |(2a_1+3b_1+4c_1,b_1,c_1),(2a2+3b_2+4c_2,b_2,c_2),(2a_3+3b_3+4c_3,b_3,c_3)| is equal to

Let log_2N=a_1+b_1,log_3N=a_2+b_2 and log_5N=a_3+b_3 , where a_1,a_2,a_3notin1 and b_1,b_2 b_3 in [0,1) . If a_1=6,a_2=4 and a_3=3 ,the difference of largest and smallest integral values of N, is

If a_1x^3 + b_1x² + c_1x + d_1 = 0 and a_2x^3 + b_2x^2+ c_2x + d_2 = 0 have a pair of repeated common roots, then prove that |[3a_1,2b_1,c_1],[3a_2,2b_2,c_2],[a_2b_1-a_1b_2,c_1a_2-c_2a_1,d_1a_2-d_2a_1]|=0

If a_1x^2 + b_1 x + c_1 = 0 and a_2x^2 + b_2 x + c_2 = 0 has a common root, then the common root is

Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c r c r|=0(a b c ,p q r!=0)dot Statement 2: if system of equations a_1x+b_1y+c_1=0,a_2x+b_2y+c_2=0,a_3x+b_2y+c^3=0 has non -trivial solutions |a_1b_1c_1a_2b_2c_2a_3b_3c_3|=0