Home
Class 12
MATHS
If a x1^2+b y1^2+c z1^2=a x2 ^2+b y2 ^2+...

If `a x_1^2+b y_1^2+c z_1^2=a x_2 ^2+b y_2 ^2+c z_2 ^2=a x_3 ^2+b y_3 ^2+c z_3 ^2=d ,a x_2 x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f,` then prove that `|(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3,y_3,z_3)|=(d-f){((d+2f))/(a b c)}^(1//2)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If a x1 2+b y1 2+c z1 2=a x1 2+b y2 2+c z2 2=a x3 2+b y3 2+c z3 2=d\ a n d\ a x_2x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f then prove that |x_1y_1z_1x_2y_2z_1x_3y_3z_3|=(d-f)[(d+2f)/(a b c)]^(//2)(a , b ,\ c!=0)

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Let x_1y_1z_1,x_2y_2z_2 and x_3y_3z_3 be three 3-digit even numbers and Delta=|{:(x_1,y_1,z_1),(x_2,y_2,z_2),(x_3,y_3,z_3):}| . then Delta is

If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove that x y z=-1 .

Find the coordinates of the centroid of the triangle whose vertices are (x_1,y_1,z_1) , (x_2,y_2,z_2) and (x_3,y_3,z_3) .

If x_(1) = 3y_(1) + 2y_(2) -y_(3), " " y_(1)=z_(1) - z_(2) + z_(3) x_(2) = -y_(1) + 4y_(2) + 5y_(3), y_(2)= z_(2) + 3z_(3) x_( 3)= y_(1) -y_(2) + 3y_(3)," " y_(3) = 2z_(1) + z_(2) espress x_(1), x_(2), x_(3) in terms of z_(1) ,z_(2),z_(3) .

Multiply : 3a b^2c^3\ b y\ 5a^3b^2c (ii) 4x^2y z\ b y-3/2x^2y z^2

Show that the plane a x+b y+c z+d=0 divides the line joining the points (x_1, y_1, z_1)a n d(x_2, y_2, z_2) in the ratio (a x_1+b y_1+c z_1+d)/(a x_2+b y_2+c z_2+d) .

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. If omega is the complex cube root of unity then |[1,1+i+omega^2,omeg...

    Text Solution

    |

  2. Consider the determinant Delta=|[a1+b1x^2,a1x^2+b1,c1],[a2+b2x^2,a2x^2...

    Text Solution

    |

  3. If a x1^2+b y1^2+c z1^2=a x2 ^2+b y2 ^2+c z2 ^2=a x3 ^2+b y3 ^2+c z3 ^...

    Text Solution

    |

  4. If A , B ,a n dC are the angles of triangle, show that the system of...

    Text Solution

    |

  5. Let alpha,beta,gamma are the real roots of the equation x^3+a x^2+b x+...

    Text Solution

    |

  6. If a1, a2, a3,54,a6,a7, a8, a9 are in H.P., and D=|[a1,a2,a3],[5, 4,a6...

    Text Solution

    |

  7. Column I, Column II The value of the determinant |x+2x+3x+5x+4x+6x+...

    Text Solution

    |

  8. If f(x) is a polynomial of degree <3, then, f(x)/((x−a)(x−b)(x−c))​is ...

    Text Solution

    |

  9. Prove that =|[a,c,c-a,a+c],[c,b,b-c,b+c],[a-b,b-c,0,a-c],[x,y,z,1+x+y]...

    Text Solution

    |

  10. Solve for x in R : |((x+a)(x-a),(x+b)(x-b),(x+c)(x-c)),((x-a)^3,(x-b)...

    Text Solution

    |

  11. Absolute value of sum of roots of the equation |[x+2,2x+3, 3x+4],[ 2x+...

    Text Solution

    |

  12. Let alpha1,alpha2 and beta1, beta2 be the roots of the equation ax^2+b...

    Text Solution

    |

  13. The product of all values of t , for which the system of equations (a-...

    Text Solution

    |

  14. " if " a(1) ,a(2), a(3)….." are in A.P, then find the value of the fo...

    Text Solution

    |

  15. Let omega=-1/2+i(sqrt(3))/2. Then the value of the determinant |(1,1,1...

    Text Solution

    |

  16. Factorize: a x+b x+a y+b y a x^2+b y^2+b x^2+a y^2 a^2+b c+a b+a...

    Text Solution

    |

  17. If g(x)=|[a^(-x),e^(x loge a),x^2],[a^(-3x),e^(3x loge a),x^4],[a^(-5x...

    Text Solution

    |

  18. The sum of values of p for which the equations x+y+z=1, x+2y +4z...

    Text Solution

    |

  19. The value of |alpha| for which the system of equation alphax+y+z=...

    Text Solution

    |

  20. Let D1=|[a, b, a+b], [c, d, c+d], [a, b, a-b]| and D2=|[a, c, a+c], [b...

    Text Solution

    |