Home
Class 12
MATHS
Greatest value of f(x)=(x+1)^(1/3)-(x-1)...

Greatest value of `f(x)=(x+1)^(1/3)-(x-1)^(1/3)` on [0,1] is 1 (b) 2 (c) 3 (d) `1/3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of f(x)=x/(4-x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

The maximum value of f(x)=x/(4+x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

The maximum value of f(x)=x/(4-x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

If f(x)={(x^2+1,x>=1),(3x-1,x 1) f(x) is (a) 2 (b) - 2 (c) 1 (d) - 1

The maximum value of the function f(x)=(1+x)^(0.3)/(1+x^(0.3)) in [0,1] is

The maximum value of [x(x-1)+1]^(1/3),0lt=xlt=1 is(A) (1/3)^(1/3) (B) 1/2 (C) 1 (D) 0

The greatest ' x ' satisfying the inequation (2x+1)/3-(3x-1)/2>1 is: (a) -4 (b) 4 (c) 1 (d) -1

f(x) = sin^(-1)x+x^(2)-3x + (x^(3))/(3),x in[0,1]

The greatest value of f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo], is (where [.] represents the greatest integer function). -1 (b) 1 (c) 0 (d) none of these

For all real values of x, the minimum value of (1-x+x^2)/(1+x+x^2) is(A) 0 (B) 1 (C) 3 (D) 1/3