Home
Class 12
MATHS
The greatest value of the function f(x)=...

The greatest value of the function `f(x)=(sin2x)/(sin(x+pi/4))` on the interval `(0,pi/2) \ i s`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The maximum value of f(x)=(sin2x)/(sinx+cosx) in the interval (0, (pi)/(2)) is

Find the difference between the greatest and least values of the function f(x)=sin2x-x on [-pi/2,pi/2]dot

Show that the function f(x) = log (sin x) (i) is strictly increasing in the interval ]0,pi/2[ . (ii) is strictly decreasing in the interval ]pi/2,pi[ .

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

The difference between the greatest between the greatest and least value of the function f(x)=sin2x-x" on"[-pi//2,pi//6] , is

Show that the function f(x)=sin^(4) x+ cos^(4) x (i) is decreasing in the interval [0,pi/4] . (ii) is increasing in the interval [pi/4,pi/2] .

If [x] denotes the greatest integer function then the extreme values of the function f(x)=[1+sinx]+[1+sin2x]+...+[1+sin nx], n in I^(+), x in (0,pi) are

Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) is

Find minium value of (9x^(2)sin^(2)x+4)/(2sinx.x) in the interval 0 le x le pi .