Home
Class 12
MATHS
Column I, Column II f(x)=sinx-x^2+1 , ...

Column I, Column II `f(x)=sinx-x^2+1` , p. has point of minima `f(x)=x(log)_e x-x+e^(-x)` , q. has point of maxima `f(x)=-x^3+2x^2-3x+1` , r. is always increasing `f(x)=cospix+10 x+3x^2+x^3` , s. is always decreasing

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the function f(x) = 4x^3-18x^2+ 27x – 7 is always increasing on R

Find points of local maxima // minima of f(x) =x^(2) e^(-x) .

If f(x)=(log)_e((x^2+e)/(x^2+1)) , then the range of f(x)

f(x)=x^2-3x ,then the points at which f(x)=f^ (x) are

f(x)=sqrt(log((3x-x^(2))/(x-1)))

The number of points of maxima/minima of f(x) =x(x + 1) (x +2) (x + 3) is

If f(x)=3x^(3)-2x^(2)+x-2 , and i =sqrt(-1) then f(i) =

Statement 1: f(x)=|x-1|+|x-2|+|x-3| has point of minima at x=3. Statement 2: f(x) is non-differentiable at x=3.

Match the column Column I (Function), Column II (Period) p. f(x)=sin^3x+cos^4x , a. pi/2 q. f(x)=cos^4x+sin^4x , b. pi r. f(x)=sin^3x+cos^3x , c. 2pi s. f(x)=cos^4x-sin^4x ,

Find the points of inflection for f(x)=sinx f(x)=3x^4-4x^3 f(x)=x^(1/3)