Home
Class 12
MATHS
Solve ((dy)/(dx))+(y/x)=y^3...

Solve `((dy)/(dx))+(y/x)=y^3`

Text Solution

Verified by Experts

Dividing the given equation by `y^(3)`, we get
`1/y^(3)(dy)/(dx)+1/y^(2)1/x=1`
Putting, `1//y^(2)=v`, we have
`(-2//y^(3))dy//dx=dv//dx`
Therefore, equation (1) becomes
`-1/2(dv)/(dx) + 1/xv=1` or `(dv)/(dx) - 2/xv=-2`
This is a linear equation with v as the dependent variable.
I.F. `e^(-int(2//x)dx)=e^(-2logx) = 1//x^(2)`
Therefore, the solution is
`v(1//x^(2)) = -2int(1//x^(2))dx+c=2//x+c`
or `2xy^(2)+cx^(2)y^(2)=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (dy)/(dx)=(2y)/x

Solve (dy)/(dx)+2*y/x=(y^3)/(x^3)

Solve: (dy)/(dx)+y/x=x^n

Solve x^2((dy)/(dx))+y=1

Solve x^2((dy)/(dx))+y=1

Solve: x(dy)/(dx)-y=x+1

Solve (dy)/(dx)=(x+y)^2

Solve (dy)/(dx)=(x+y)^2

Solve: (dy)/(dx)+y=e^x

Solve (dy)/(dx)+(y)/(x)=log x.