Home
Class 12
MATHS
Prove that: y=int(1/8)^(sin^2x)sin^(-1)s...

Prove that: `y=int_(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int_(1/8)^(cos^2x)cos^(-1)sqrt(t)`, where `0lt=xlt=pi/2`, is the equation of a straight line parallel to the x-axis. Find the equation.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

Prove that : int_0^(pi/2)sqrt(1-sin2x)dx=2(sqrt(2)-1)

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))\ dx

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

Find : int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx ,x in [0,1]

(i) If f(x) = int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t) dt, then prove that f'(x) = 0 AA x in R . (ii) Find the value of x for which function f(x) = int_(-1)^(x) t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum.

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))=pi/4-1/2cos^(-1),-1/(sqrt(2))lt=xlt=1

CENGAGE ENGLISH-INTEGRALS-All Questions
  1. If x=int0^y (dt)/sqrt(1+9t^2) and (d^2y)/(dx^2)=ay, then find a

    Text Solution

    |

  2. The value of int(1/e)^(tanx)(tdt)/(1+t^2)+int(1/e)^(cotx)(dt)/(t(1+t^2...

    Text Solution

    |

  3. Prove that: y=int(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int(1/8)^(cos^2x)cos^...

    Text Solution

    |

  4. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  5. Evaluate: int1^a xdota^(-[(log)a x])dx ,(a >1)dot

    Text Solution

    |

  6. int0^oo(sin^2x)/(x^2)dx must be same as:

    Text Solution

    |

  7. Evaluate: int1^(e^6)[(logx)/3]dx ,w h e r e[dot] denotes the greatest...

    Text Solution

    |

  8. If int(0)^(oo) (sinx)/x dx=(pi)/2, then int(0)^(oo) (sin^(3)x)/x dx i...

    Text Solution

    |

  9. Find the value of int(-1)^(1)[x^(2)+{x}]dx, where [.] and {.} denote t...

    Text Solution

    |

  10. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] de...

    Text Solution

    |

  11. Evaluate: int(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the grea...

    Text Solution

    |

  12. Evaluate: int(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the grea...

    Text Solution

    |

  13. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  14. Prove that int0^1xe^xdx=1

    Text Solution

    |

  15. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  16. Prove that int0^oo[n e^(-x)]dx=ln((n^n)/(n !)),w h e r en is a na...

    Text Solution

    |

  17. For x in R and a continuous function f, let I1=int(sin^2t)^(1+cos^2t)...

    Text Solution

    |

  18. Evaluate of each of the following integrals int(pi//6)^(pi//3)(sqrt...

    Text Solution

    |

  19. Given a function f:[0,4]toR is differentiable ,then prove that for som...

    Text Solution

    |

  20. Evaluate: int0^(pi/2)log((4+3sinx)/(4+3cosx))dx

    Text Solution

    |