Home
Class 12
MATHS
If matrix A is given by A=|[6, 11], [2, ...

If matrix `A` is given by `A=|[6, 11], [2, 4]|` , then the determinant of `A^(2005)-6A^(2004)` is a. `2^(2006)` b. `(-11)2^(2005)` c. `-2^(2005)` d. `(-9)2^(2004)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005)-6A^(2004) is

((x-4)^(2005)dot(x+8)^(2008)(x+1))/(x^(2006)(x-2)^3dot(x+3)^5 0(x-6)(x+9)^(2010))lt=0

The last digit of (1!+2!++2005 !)^(500) is (A) 9 (B) 2 (C) 7 (D) 1

The coefficient of x^1007 in the expansion (1+x)^(2006)+x(1+x)^(2005)+x^2(1+x)^(2004)x^3(1+x)^(2003)+..... +x^(2006) is

The digit at the unit place in the number 19^(2005)+11^(2005)-9^(2005) is :

int(cosec^2x-2005)/cos^[2005]x.dx

Find the value of the determinant |[2,-3,6],[3,-4,-11],[5,2,4]|

If the rank of the matrix [[-1,2,5],[2,-4,a-4],[1,-2,a+1]] is 1 then the value of a is (A) -1 (B) 2 (C) -6 (D) 4

If 3xx3 order matrix A is such that det(A)= 2 then |A(a d jA)| is (a) 8 (b) 9 (c) 6 (d) 3

Express each of the following as a percentage : 2.005