Home
Class 12
MATHS
If A=[[a+i b, c+i d],[-c+i d, a-i b]] an...

If `A=[[a+i b, c+i d],[-c+i d, a-i b]] and a^2+b^2+c^2+d^2=1,t h e n ,A^(-1)` is equal to a.`[[a+i b,-c+i d],[c+i d, a-i b]]` b. `[[a-i b,-c-i d],[-c-i d, a+i b]]` c. `[[a+i b,-c-i d],[-c+i d, a-i b]]` d. none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the value of |[a+i b, c+i d],[-c+i d ,a-i b]| .

If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equal to O I b. 2I c. 6I d. I

If a^2+b^2=1 t h e n (1+b+i a)/(1+b-i a)= 1 b. 2 c. b+i a d. a+i b

(a) a- i ,b-iii,c-ii (b) a-iii,b-ii,c- i (c) a-ii,b-iii,c- i (d) a-ii,b- i ,c-iii

If A is a square matrix such that A^2=A ,t h e n(I+A)^3-7A is equal to (a) A (b) I-A (c) I (d) 3A

If A=[[i,-i],[-i ,i]] and B=[[1,-1],[-1 ,1]], t hen ,A^8 equals a. 4B b. 128 B c. -128 B d. -64 B

If a square matrix such that A^2=A , then (I+A)^3-7A is equal to A (b) I-A (c) I (d) 3A

If A is a square matrix such that A^2=A ,then (I+A)^3-7A is equal to: (a) A (b) I-A (c) I (d) 3A

(1+2i+3i^2)/(1-2i+3i^2) equals a. i b. -1 c. -i d. 4

If A ,B ,A+I ,A+B are idempotent matrices, then A B is equal to B A b. -B A c. I d. O