Home
Class 12
MATHS
Statement 1: If A ,B ,C are matrices suc...

Statement 1: If `A ,B ,C` are matrices such that `|A_(3xx3)|=3,|B_(3xx3)|=-1,a n d|C_(2xx2)|=_2, t h e n|2A B C|=-12.` Statement 2: For matrices `A ,B ,C` of the same order,`|A B C|=A=|A||B||C|dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1 (Assertion and Statement- 2 (Reason) Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. Statement- 1 If A, B, C are matrices such that abs(A_(3xx3))=3, abs(B_(3xx3))= -1 and abs(C_(2xx2)) = 2, abs(2 ABC) = - 12. Statement - 2 For matrices A, B, C of the same order abs(ABC) = abs(A) abs(B) abs(C).

Let A, B and C are nxxn matrices such that |A|-2, |B|=3 and |C|=5 . If |(2A)^(2)(3B)(5C)^(-1)|=(1728)/(125) , then the value of n is equal to

Statement 1: if a ,b ,c ,d are real numbers and A=[a b c d]a n dA^3=O ,t h e nA^2=Odot Statement 2: For matrix A=[a b c d] we have A^2=(a+d)A+(a d-b c)I=Odot

Let A be a matrix of order 3xx3 such that |A|=3 . Let B=3A^(-1) and C =(adjA)/(2) , then the value of |A^(2)B^(3)C^(4)| is

If A and B are two non-singular matrices such that A B=C ,t h e n,|B| is equal to a. (|C|)/(|A|) b. (|A|)/(|C|) c. |C| d. none of these

Let A and B are two matrices of order 3xx3 , where |A|=-2 and |B|=2 , then |A^(-1)adj(B^(-1))adj(2A^(-1))| is equal to

If A and B are two square matrices such that B=-A^(-1)B A ,t h e n(A+B)^2 is equal to a. A^2+B^2 b. O c. A^2+2A B+B^2 d. A+B

Let A and B be square matrices of the order 3xx3 . Is (A B)^2=A^2B^2 ? Give reasons.

Let A and B be square matrices of the order 3xx3 . Is (A B)^2=A^2B^2 ? Give reasons.