Home
Class 12
MATHS
Let T >0 be a fixed real number. Suppos...

Let `T >0` be a fixed real number. Suppose `f` is continuous function such that for all `x in R ,f(x+T)=f(x)dot` If `I=int_0^Tf(x)dx ,` then the value of `int_3^(3+3T)f(2x)dx` is (a)`3/2I` (b) `2I` (c) `3I` (d) `6I`

A

`3/2I`

B

`2I`

C

`3I`

D

`6I`

Text Solution

AI Generated Solution

To solve the problem, we need to evaluate the integral \( \int_{3}^{3+3T} f(2x) \, dx \) given that \( f(x+T) = f(x) \) for all \( x \in \mathbb{R} \) and \( I = \int_{0}^{T} f(x) \, dx \). ### Step-by-Step Solution: 1. **Substitution**: Let \( y = 2x \). Then, differentiating both sides gives us \( dy = 2dx \) or \( dx = \frac{dy}{2} \). 2. **Change of Limits**: When \( x = 3 \), then \( y = 2 \cdot 3 = 6 \). When \( x = 3 + 3T \), then \( y = 2(3 + 3T) = 6 + 6T \). ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos

Similar Questions

Explore conceptually related problems

Let T >0 be a fixed real number. Suppose f is continuous function such that for all x in R ,f(x+T)=f(x)dot If I=int_0^Tf(x)dx , then the value of int_3^(3+3T)f(2x)dx is 3/2I (b) 2I (c) 3I (d) 6I

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

A continuous real function f satisfies f(2x)=3(f(x)) AA x in R . If int_0^1 f(x)dx=1, then find the value of int_1^2f(x)dx .

If f(x)=int_0^x tf(t)dt+2, then

Let: f:[0,3]vecR be a continuous function such that int_0^3f(x)dx=3. If I=int_0^3(xf(x)+int_0^xf(t)dt)dx , then value of I is equal to

If f is continuous on [0,1] such that f(x)+f(x+1/2)=1 and int_0^1f(x)dx=k , then value of 2k is 0 (2) 1 (3) 2 (4) 3

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

CENGAGE ENGLISH-INTEGRALS-All Questions
  1. If I1=int0^(pi//2)(cos^2x)/(1+cos^2x)dx , I2=int0^(pi//2)(sin^2x)/(1+s...

    Text Solution

    |

  2. Prove that int0^1sqrt((1+x)(1+x^3))\ dx cannot exceed sqrt((15)/8).

    Text Solution

    |

  3. Let T >0 be a fixed real number. Suppose f is continuous function su...

    Text Solution

    |

  4. Evaluate: int0^1 1/(sqrt(1-x^2))sin^(-1)(2xsqrt(1-x^2))dxdot

    Text Solution

    |

  5. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation x...

    Text Solution

    |

  6. Evaluate: int(-pi//2)^(pi//2) sqrt(cosx-cos^3x) dx

    Text Solution

    |

  7. If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function fo...

    Text Solution

    |

  8. int(-1)^2|x^3-x|dxdot

    Text Solution

    |

  9. If f(x) is integrable over [1,2], then int1^2f(x)dx is equal to (a) (...

    Text Solution

    |

  10. Evaluate: int(-pi/2)^(2pi)sin^(-1)(sinx)dx

    Text Solution

    |

  11. The value of int0^(pi/4)sin2xdx is

    Text Solution

    |

  12. Let: an=int0^(pi/2)(1-sint)^nsin2tdt Then find the value of lim(n->o...

    Text Solution

    |

  13. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  14. Prove that int0^(102)(x-1)(x-2)..(x-100)xx(1/(x-1)+1/(x-2)+.... .+ 1/...

    Text Solution

    |

  15. Let f:[0,2]->R be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  16. Evaluate: int0^1(1)/((1+x^2)sqrt(1-x^2))dx

    Text Solution

    |

  17. If f(x)={(e^cosx sinx ,, |x| leq 2),(2 ,, other wise):}. Then int-2^...

    Text Solution

    |

  18. Evaluate: int0^(pi//2)1/((a^2cos^2x+b^2sin^2x)^2)dx

    Text Solution

    |

  19. Prove that: int0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx= pi^2

    Text Solution

    |

  20. Prove that 1 lt underset(0)overset(2)int((5-x)/(9-x^(2)))dx lt 6/5

    Text Solution

    |