Home
Class 12
MATHS
A and B are square matrices and A is non...

A and B are square matrices and A is non-singular matrix, then `(A^(-1) BA)^n,n in I'` ,is equal to (A) `A^-nB^nA^n` (B) `A^nB^nA^-n` (C) `A^-1B^nA` (D) `A^-nBA^n`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If Aa n dB are square matrices of the same order and A is non-singular, then for a positive integer n ,(A^(-1)B A)^n is equal to A^(-n)B^n A^n b. A^n B^n A^(-n) c. A^(-1)B^n A^ d. n(A^(-1)B^A)^

Let A be an orthogonal non-singular matrix of order n, then |A-I_n| is equal to :

Let A; B; C be square matrices of the same order n. If A is a non singular matrix; then AB = AC then B = C

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

If A is a non singular square matrix; then adj(adjA) = |A|^(n-2) A

If A is a non singular square matrix; then adj(adjA) = |A|^(n-2) A

If A, B are two n xx n non-singular matrices, then (1) AB is non-singular (2) AB is singular (3) (AB)^(-1)=A^(-1) B^(-1) (4) (AB)^(-1) does not exist

If A=[(1,1),(1,0)] and n epsilon N then A^n is equal to (A) 2^(n-1)A (B) 2^nA (C) nA (D) none of these

If A ,\ B are square matrices of order 3,\ A is non-singular and A B=O , then B is a (a) null matrix (b) singular matrix (c) unit matrix (d) non-singular matrix

Let A and B are two matrices such that AB = BA, then for every n in N