Home
Class 12
MATHS
Let A=a0 be a matrix of order 3, where a...

Let `A=a_0` be a matrix of order 3, where `a_(i j)=x ; ifi=j ,x in R, 1 if|i-j|=1, 0;ot h e r w i s e` then when of the following Hold (s) good: for`x=2` , (a) `A` is a diagonal matrix (b) `A` is a symmetric matrix for`x=2` , (c) det `A` has the value equal to 6 (d) Let `f(x)=` , det `A ,` then the function `f(x)` has both the maxima and minima.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R ->R defined by f(x) = min(|x|, 1-|x|) , then which of the following hold(s) good ?

If f(x)={x^2,xlt=0 2sinx ,x >0'in v e s t iga t et h e function at x=0 for maxima/minima

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=([a_(i j)])_(2xx2) , where a_(i j)={1,\ if\ i!=j0,\ if\ i=j , then A^2 is equal to I (b) A (c) O (d) I

Given the function f(x)=x^2e^-(2x) ,x>0. Then f(x) has the maximum value equal to a) e^-1 b) (2e)^-1 . c) e^-2 d) none of these

Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

If A=[a_(i j)] is a square matrix of even order such that a_(i j)=i^2-j^2 , then (a) A is a skew-symmetric matrix and |A|=0 (b) A is symmetric matrix and |A| is a square (c) A is symmetric matrix and |A|=0 (d) none of these